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The idea of stromal-hematopoietic cell 
interactions was the essential part of 
Alexander Maximov's theory of he rna to­
poiesis, which he proposed more than 
60 years ago. According to Maximov 
(see Figs. 1-4), committed hematopoietic 
precursors descend from the hematopoi­
etic stem cells due to local impacts gener­
ated by marrow stroma; this creates the 
conditions for hematopoietic cell differ­
entiation [1]. Maximov's theory was far 
ahead of his time, and, though Maximov 
was highly respected in the scientific 
community, his concept of local "differ­
entiation conditions" operative in hema­
topoiesis was met with particular skepti­
cism. Today, Maximov's idea raises no 
doubt; in fact, it constitutes the essence 
of the problem of hematopoietic mi­
croenvironment (HME). What provokes 
discussions in modern hematology is the 
exact types of stromal cells responsible 
for HME and the mechanisms of stro­
mal-hematopoietic cell interactions. 
Maximov assumed that the stromal cells 
in question were stromal fibroblasts 
(reticular cells), but for a long time many 
experimental hematologists denied this. 
Only recently has it been possible to ap­
ply two experimental models for check­
ing the microenvironmental functions of 
marrow fibroblasts. The first model is the 
transfer of HME by heterotopic trans­
plantation of marrow cells; the second is 
the establishment of HME in vitro by 
stromal cell underlayers in Dexter cul­
tures. 
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Heterotopic transplantation of mar­
row cells results in the formation of mar­
row organs covered by a bone capsule 
[2-5]. Their hematopoietic cells are of 
the recipient origin [6], indicating that en­
graftment of some category of marrow 
cells results in the formation of bone and 
an HME suitable for population by he­
matopoietic cells and for their prolifera­
tion and differentiation. Heterotopic 
marrow can be retransplanted repeatedly 
with similar results, provided the recipi­
ents are compatible with H-2 antigens of 
the initial donor, not of the intermediate 
recipients [7 -8]. This means that HME is 
transferred by engraftment of the mar­
row cells which remain unreplaced by the 
recipient cells. Chromosome typing of 
c1onogenic stromal fibroblasts (CFUf) of 
the heterotopic marrow confirmed their 
donor origin [9,10], and the problem was 
to check whether stromal fibroblasts 
were able to transfer HME when grafted 
heterotopic ally . 

The in vitro descendents of CFUf after 
several passages compose diploid fibro­
blast cultures [11-13]. Tested by hetero­
topic transplantation, they were found to 
form bone marrow organs, while engraft­
ment of cultured spleen fibroblasts (the 
descendents of spleen CFUf) produced 
lymphoid organs [14, 15]. Thus, cultured 
marrow fibroblasts appear to be able to 
transfer bone marrow HME. Depending 
on the origin of marrow fibroblast cul­
tures (the source CFUfbeing from red or 
yellow marrow), their engraftment trans­
ferred not only the general pattern of 
HME, but also such details as the density 
of hematopoietic cells in a would-be mar­
row [16]. 

Cultured marrow fibroblasts produce 
hematopoietic growth factor (M-CSF, G-
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CFS, OM-CFS, BFUf- and mixed­
colony-CSF) which can be detected in the 
culture medium [17 - 20]. They regulate 
proliferation and differentiation of OM­
CFU: their stimulatory effects were not­
ed when the target marrow contained few 
spontaneous colonies, the inhibitory ef­
fects when large numbers of spontaneous 
OM-CFU were present [21]. Hematopoi­
etic growth factors are also produced by 
cloned lines of marrow fibroblasts [22]. 
However, the direct proof of in vitro mi­
croenvironmental competence of mar­
row fibroblasts was their ability to estab­
lish HME in Dexter-type cultures. It has 
been shown [23] that when used as under­
layers, the passaged murine marrow fi­
broblasts, free from macrophages and 
endothelial cells, supported hemato­
poiesis if seeded with stromal cell-deplet­
ed marrow suspensions. 

Thus, cultured marrow fibroblasts 
transfer HME, release hematopoietic 
growth factors in vitro, and are capable 
of presenting them in a proper way to 
support hematopoiesis in cultures. This 
confirms Maximov's hypothesis of the 
role of marrow fibroblasts in hemato­
pOleSIS. 

The population of marrow fibroblasts 
is probably a heterogeneous one, and 
there is no evidence that marrow fibro­
blasts which produce or present hemato­
poietic growth factors are the same cells 
which transfer HME, and vice versa. It 
may well be that there are several sub­
populations of marrow fibroblasts with 
different microenvironmental functions. 
At present, fibroblasts including those 
from nonhematopoietic and hematopoi­
etic organs look much alike, reminiscent 
of the situation with lymphocytes in 
Maximov's time. The main and most 
conclusive sine of fibroblasts (mecha­
nocytes) is interstitial collagen types I 
and III synthesis, and few markers of 
their phenotype and genetic diversity 
have been so far ascertained. The diversi­
ty does exist, for instance, between mar­
row as compared with spleen fibroblasts, 
which is proved by the results of their 
heterotopic transplantation. The next 
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question regarding HME seems to be the 
diversity of marrow fibroblasts including 
their clonogenic precursor cells. 

In primary cultures of marrow cell sus­
pensions the CFUf (CFCf) form adher­
ent-cell colonies which are cell clones [24, 
25]. The colonies are composed of fibro­
blasts which synthesize type-I and -III 
collagen and fibronectin and lack macro­
phage markers and VlII-factor-associat­
ed antigen [26-30]. Morphologically, the 
colonies are distinctly heterogeneous 
within each culture. Some are composed 
of elongated or blanket-like fibroblasts 
or of a mixture of both; the colonies may 
include fat cells or have a mineralized 
intercellular matrix [39]. These differ­
ences can hardly be regarded as markers 
of CFCf, the diversity not beeing stable 
at passaging and recloning. 

In situ CFCf are outside the cycle ar­
rested in 00 [31]. Marrow fibroblasts 
possess PDOF receptors [32] and in 
medium with platelet-poor plasma their 
proliferation and the CFUf colony for­
mation requires PDOF [33, 34]. It is be­
lieved that serum growth factors, which 
include PDOF, are sufficient for recruit­
ment of CFCf into the cycle and that 
CFUf colony formation in serum-supple­
mented medium does not require addi­
tional growth stimulation. Yet this is 
probably not the case. 

The efficiency of CFUf colony forma­
tion (CFEf) drops close to zero in low­
density marrow cultures if they are de­
pleted of nonadherent cells: 85% of 
CFCf do not proliferate at all or pass 
through one to three cell doublings 
(Fig. 1). On the other hand, the CFEf 
increases dramatically when such adher­
ent marrow cell cultures are supplement­
ed with irradiated marrow feeder cells or 
with platelets. This colony-stimulating 
activity is not replaced by additional 
PDOF and is expressed only in the 
serum-rich medium. Being stimulated by 
platelets each fibroblast precursor pres­
ent in marrow cell suspensions turns out 
to be a clonogenic stromal cell (Fig. 1). 
Thus, nonstromal marrow cells which 
accompany CFCf in marrow cultures 
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Fig. 1. CFUf colony formation in mice adherent marrow cell cultures. Cultures were initiated 
by injecting 5 x 105 mechanically (white colomns) or 5 x 104 trypzinised (black columns) marrow 
cells per culture flask (25 cm2). Two hours after explantation the nonadherent cells were decant­
ed from all cultures and further cultivation accomplished in aM EM medium plus 20% embry­
onal calf serum, part of the cultures (G) being additionally suplemented with 107 irradiated (60 
Gy) marrow cells. Abscissa: A - E - fibroblast foci, fibroblast colonies and single fibroblasts in 
feeder non-supplemented cultures. A - single fibroblasts in one day cultures; B-F - 10 day 
cultures: B - single fibroblasts, C - two fibroblasts foci, D - three-eight fibroblasts foci, E -
nine-forty nine fibroblasts foci, F - fibroblast colonies composed of 50 and more fibroblasts, 
L - sum of B, C,D,E and Fper culture. G -fibroblasts colonies in 10 days feeder-supplemented 
cultures. Ordinate: mean numbers (M ±m) of single fibroblasts, fibroblast foci and fibroblast 
colonies for 3 - 5 cultures. 

(probably megakaryocytes) provide 
growth-stimulating factors for CFUf 
colony formation. There are indications 
that CFCf are sensitive also to other 
growth-stimulating factors which induce 
the formation of fibroblast colonies 
with a different composition of matrix 
proteins. It has been reported [35] that 
marrow cells cultured in methy1cellulose­
clotted plasma with cortisone and PH A­
stimulated leukocyte-conditioned medi­
um produced fibroblast colonies with 
cqIlagen type IV and laminin, in addition 
to collagen types I and III and fibro­
nee tin present in CFUf colonies, in liquid 
cultures with the serum-supplemented 
medium. The differences suggest either 
that there is a diversity of CFCf, which 
also require different colony-stimulating 
factors, or that the same CFCf can gener­
ate different descendents, depending on 
the stimulating factors used to induce 
colony formation. 

Marrow CFCf diversity was demon­
strated with regard to their proliferative 
and differentiative potencies. Only a 
small portion (10%) of single CFUf 

colonies transferred HME when grafted 
heterotopically, i. e., formed bone mar­
row organs [36]. At least 30% of CFCf 
appeared to be highly proliferative cells 
which provide single-colony-derived fi­
broblast cultures with 20-30 popUlation 
doublings. When tested by transplanta­
tion of cells in diffusion chambers, 20% 
of these cultures formed simultaneously 
bone, cartilage, and reticular-like tissue, 
30% formed only bone, and 27% only 
reticular-like tissue. The number of os­
teogenic units in late passages of cultured 
fibroblasts exeeded by far the total num­
bers of the initially explanted marrow 
cells, indicating that osteogenic precur­
sors intensively multiplied within cul­
tures [37]. There are reasons to consider 
CFCf with osteochondrogenic potencies 
as being osteogenic stem cells [38, 39]. 
One can assume that some of them are 
the progenitors of a marrow stromal lin­
eage which includes committed osteo­
genic precursors, mature bone cells, and 
microenvironmentally competent fibro­
blasts (reticular cells). The assumption is 
backed up by the obligatory association 
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of HME transfer with bone formation, 
which applies to heterotopic transplanta­
tion of both freshly isolated marrow and 
single-CFUf-derived fibroblast colonies. 
In the heterotopic marrow the CFUf are 
of donor origin [9, 10], and it is reason­
able to assume that the same applies to 
the microenvironmentally competent 
reticular cells. However, the ability of 
fibroblasts from single CFUf-colony­
derived heterotopic bone marrow organs 
to support hematopoiesis in vitro, and 
their donor origin (which would be the 
proof of the above speCUlation) was not 
tested up to now. Anyway, the hierarchy 
of marrow precursors awaits further 
studies. 
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Fig. 2. Type I colla­
gen in 12 day CFUf 
colony of guinea pig 
periferal blood leu­
kocytes. Anticolla­
gen antiserum, im­
munoperoxidase re­
action (a). Live cul­
ture (b). 

As far as Maximow's contribution to 
the problems of HME is concerned, it is 
impossible to omit his last work, entitled 
"Cultures of blood leukocytes. From 
lymphocyte and monocyte to connective 
tissue." [40]. It describes the formation of 
fibroblasts in plasma-clot cultures of 
guinea-pig blood cells. Subsequently, his 
results were put in question on the 
grounds of two possible objections, 
namely that the source of fibroblasts 
might be fragments of vessel walls which 
contaminate the blood during sampling, 
and that the cells in question were not 
fibroblasts (for references, see [41]). The 
first objection proved to be invalid when 
a CFUf colony assay was carried out 



Fig. 3. Fibroblasts 
and collagen fibrils 
in 16 day CTUf 
colonies of rabbit 
peri feral blood 

a 
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with blood cells. It turned out that the 
incidence of CFUf colonies in guinea-pig 
and rabbit leukocyte cultures did not 
change with the number of punctures 
performed for blood sampling [42]. It has 
also been shown that fibroblasts in 
blood-derived CFUf colonies synthesize 
collagen type I [43] and lack VlII-factor­
associated antigen and macrophage 
determinant Mad [44], which confirms 
their fibroblast nature (Fig. 2, 3). It 

remains unknown from where CFUf 
migrate into blood, where they settle (if 
they do), and why blood-derived CFUf 
are not detectable in some mammals, in­
cluding human beings. The presence of 
fibroblast precursors in blood discovered 
by Maximov is related to many unsolved 
problems of HME, in particular, to the 
possibility of CFUf repopulation; CFUf 
circulation in blood does not prove it at 
all. 
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Fig. 4. Professor Alexander Maximov 
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The story of the circulating fibroblast 
precursor cells demonstrates once again 
that not only Maximov's ideas, but also 
his experimental results are so topical 
that Professor Alexander Maximov al­
most remains a participant of present­
day research (Fig. 5). 

Fig. 5. Maximov in 
his tissue culture 
laboratory in the 
Military Medical 
Academy in Peters­
burg (1915) 

Fig. 5 a. Preparation 
of plasma for plas­
ma-clot cultures 



Fig. S b. Placing tis­
sue fragments in 
culture medium 

Fig. Sc. Kaissug 
hangrug-drop cul­
tures in hallow­
ground microscope 
slides. 
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